### −5.8c+4.2−3.1+1.4c

This encounters adding, subtracting and finding the least usual multiple.

You are watching: −5.8c+4.2−3.1+1.4c

## Step by step Solution

### Reformatting the input :

Changes do to your input should not influence the solution: (1): "1.4" was changed by "(14/10)". 4 much more similar replacement(s)## Step 1 :

7 leveling — 5Equation at the end of step 1 : 58 42 31 7 (((0-(——•c))+——)-——)+(—•c) 10 10 10 5

## Step 2 :

31 leveling —— 10Equation at the finish of step 2 : 58 42 31 7c (((0-(——•c))+——)-——)+—— 10 10 10 5## Step 3 :

21 leveling —— 5 Equation at the finish of step 3 : 58 21 31 7c (((0-(——•c))+——)-——)+—— 10 5 10 5## Step 4 :

29 leveling —— 5 Equation at the end of step 4 : 29 21 31 7c (((0 - (—— • c)) + ——) - ——) + —— 5 5 10 5## Step 5 :

Adding fountain which have actually a common denominator :5.1 adding fractions which have actually a usual denominatorCombine the numerators together, placed the amount or distinction over the usual denominator then mitigate to lowest terms if possible:-29c + 21 21 - 29c ————————— = ———————— 5 5 Equation at the end of action 5 : (21 - 29c) 31 7c (—————————— - ——) + —— 5 10 5

## Step 6 :

Calculating the Least typical Multiple :6.1 uncover the Least typical Multiple The left denominator is : 5 The best denominator is : 10Number of times each prime factorappears in the factorization of:PrimeFactorLeftDenominatorRightDenominatorL.C.M = MaxLeft,Right5 | 1 | 1 | 1 |

2 | 0 | 1 | 1 |

Product of allPrime Factors | 5 | 10 | 10 |

Least typical Multiple: 10

Calculating multipliers :6.2 calculate multipliers for the 2 fractions represent the Least typical Multiple by L.C.M signify the Left Multiplier by Left_M represent the ideal Multiplier by Right_M represent the Left Deniminator through L_Deno represent the right Multiplier through R_DenoLeft_M=L.C.M/L_Deno=2Right_M=L.C.M/R_Deno=1

Making indistinguishable Fractions :6.3 Rewrite the 2 fractions into equivalent fractions

L. Mult. • L. Num. (21-29c) • 2 —————————————————— = ———————————— L.C.M 10 R. Mult. • R. Num. 31 —————————————————— = —— L.C.M 10Adding fountain that have a common denominator :6.4 including up the two equivalent fractions include the two equivalent fractions i m sorry now have a typical denominatorCombine the numerators together, placed the sum or distinction over the common denominator then minimize to lowest terms if possible:

(21-29c) • 2 - (31) 11 - 58c ——————————————————— = ———————— 10 10 Equation at the finish of step 6 : (11 - 58c) 7c —————————— + —— 10 5

## Step 7 :

Calculating the Least common Multiple :7.1 discover the Least common Multiple The left denominator is : 10 The ideal denominator is : 5Number of times every prime factorappears in the administer of:PrimeFactorLeftDenominatorRightDenominatorL.C.M = MaxLeft,Right2 | 1 | 0 | 1 |

5 | 1 | 1 | 1 |

Product the allPrime Factors | 10 | 5 | 10 |

Least common Multiple: 10

Calculating multipliers :7.2 calculation multipliers for the 2 fractions denote the Least usual Multiple by L.C.M represent the Left Multiplier through Left_M represent the appropriate Multiplier by Right_M signify the Left Deniminator by L_Deno denote the best Multiplier by R_DenoLeft_M=L.C.M/L_Deno=1Right_M=L.C.M/R_Deno=2

Making indistinguishable Fractions :7.3 Rewrite the 2 fractions into identical fractions

L. Mult. • L. Num. (11-58c) —————————————————— = ———————— L.C.M 10 R. Mult. • R.

See more: 0.875 As A Fraction In Simplest Form, Easily Calculate 0

Num. 7c • 2 —————————————————— = —————— L.C.M 10 including fractions that have a usual denominator :7.4 adding up the two indistinguishable fractions

(11-58c) + 7c • 2 11 - 44c ————————————————— = ———————— 10 10